
Searching the Web with Hand-Handled Devices

Dorin Sima, “Lucian Blaga” University, Bd. Victoriei No. 10, Sibiu, Romania, email: dorin.sima@ulbsibiu.ro
 Rodica Baciu, “Lucian Blaga” University, Bd. Victoriei No. 10, Sibiu, Romania, email: rodica.baciu@ulbsibiu.ro

Abstract: In this paper we describe a Java based
meta-search engine designed to be used on hand-
handled devices. The main problem for these devices
(the problem of information visualisation on small
size screen) was solved using two techniques:
documents clustering and text summarisation.

Keywords: Information Visualization, Hierarchical
Clustering, LSA, Galois Lattices and Summarization

INRODUCTION

It is well known that the task of finding the right
information on the Web isn’t an easy one. The result
depends on the performances of chosen search engines
and the ability of the user to put a right query and to
navigate on the returned results set. Very large data sets
returned by the search engine are problematic to display
even on desktop screens. For a hand-handled device this
is more problematic: one main characteristic of the hand-
handled devices is that they have small screens
compared to the existing desktop environment displays.
In this paper we describe a Java based meta-search
engine designed to be used on hand-handled devices.
The system has a Client/Server architecture: the server
part (meta-search engine) runs on a desktop computer
and the client, responsible with visualisation, runs on any
Java enabled computer, including had-handled like
iPAQ.
As a meta-search engine the system could be configured
to work with different regular search engines. Each
regular search engine (google, yahoo, etc.) “has a
unique index of pages, and different relevance
algorithms. Because of this, you often get very different
results using the same query words on different engines.
If you're not finding what you're looking for, stop
banging away on your "favourite" and try another
engine! “ (Chris Sherman - What's the Best Search
Engine?).
More, a search engine identifies "static" pages, rather
than the "dynamic" information stored in databases. A
meta-search engine could be configured to access a so-
called “invisible Web".
The problem of visualisation on small devices was
solved here using two techniques:

- the result set returned by meta-search engine is
shown in different ways: as a list or clustered

(hierarchical or conceptual-based on Galois
Lattices)

- the user may see only the summarised
information from target pages

Fig. 1 The result set returned by search engines

BACKGROUND

Traditional search engines provide users with a way of locating
interesting documents related to a query, using certain
keywords to search for. Usually conventional retrieval systems
return long lists of ranked documents that users are forced to
scan through to find the relevant documents (fig. 1).
We must carry out a representation of “documents” that
allows clustering. In this paper the term document
denotes the text in the description part of each item
returned by a search engine.

Documents representation

In the vector-space model (VSM) both the documents
and requests are represented as m-dimensional vectors.
In this case the attached weights are normalised sub-
unitary positive numbers.
Dj = (w1j, w2j,…, wmj), - where wij represents the
weight of i-th term in the j-th document.
Therefore we can rigorously define the similarity
between two documents or between a document and a
query as a scalar product or a cosines between two m-
dimensional vectors. Using the following notations, we
can define the cosine between documents:

wij = tfij * idfi = tfij * log2 (N/ dfi) where:
wij – is the weight of term i in document j
tfij = fij / max{fij} local weight of the term i ;
 fij –frequency of the term i in document j
dfi – number of documents containing term i
N – all documents

Hierarchical Clustering

Clustering starts with a set of singleton clusters, each
containing a single document di D, i=1, ..., N, where D
equals the entire set of documents and N equals the
number of all documents. The two most similar clusters
over the entire set D are merged to form a new cluster
that covers both. This process is repeated for each of the
remaining N-1 documents. The process stops when the
cosine similarity between the closest clusters is less than
some min value. In figure 2 this happens after step 3.

Fig. 2 Hierarchical documents clustering

Latent Semantic Indexing

This approach of using terms as the descriptors of a
document has certain drawbacks. Its major limitation is
that it assumes that terms are independent. But some
terms are likely to co-occur in documents about given
topic because they all refer to aspects of that topic. To
capture these term-term statistical relationships, the
Latent Semantic Indexing (LSI) method is used. LSI is
based on a matrix decomposition method called Singular
Value Decomposition (SVD). Having a term-document

matrix A, SVD computes three matrices U, S and V such
that:

A = U*S*VT, where
A is an m x n matrix that represents the n documents

containing m words. Then rank of the matrix A is r.
U is an m x m orthogonal matrix, having the left

singular vectors of A as its columns
S is the diagonal matrix having the r nonzero singular

values of A in order along its diagonal.
V is an r x n orthogonal matrix, having the right

singular vectors of A as its columns.

In LSI, the rank-k approximation of the original matrix A
is computed by using k-largest singular values. This
corresponds to a projection of original m-dimensional
vectors (documents) in a k-dimensional space, where k is
much smaller than m. As result minor differences in
words usage will be ignored (Berry 1994).

Formal Concept Analysis

An alternative to HCA is based on Formal Concept
Analysis: a way to find, structures, and display
relationships between concepts, which consist of
attributes and objects. Concept analysis is a
mathematical technique that starts with a set of objects,
each of which has a set of attributes. A “concept” is
simply the subset containing all objects that have a
particular subset of attributes. It turns out that a lattice
(i.e., a tree-like structure in which each node can have
more than one parent) can be formed of concepts, each
of which contains its children in the lattice. In other
words, the top node of the tree represents all of the
objects, and each branch down the tree reduces the
number of objects by adding one or more attributes to
the concept definition.
More formally (Miller):
A formal context (FC) is a triple (G, M, I) which consists
of a set G of objects, a set M of attributes and a binary
(incidence) relation I G M between objects and
attributes. In our case the objects will be the documents
(the description parts of each item in the results set
returned by search engines) and the “keywords”
extracted from that documents are attributes.
A concept (A, B) is defined as a pair of objects A G
and attributes B M, which fulfil certain conditions. A is
called extent and B is called intent of the concept. To
define the necessary and sufficient conditions for a
formal context we present two derivation operators.
Given A G we define
A' := {m M| g A: (g, m) I}
and dually for B M
B' := {g G| m B: (g, m) I}.
A' contains all attributes that are common to all objects
in A. And B' is the set of all objects that carry all the
attributes of B.
With that, the pair (A, B) is a formal concept if
A' = B and A = B'.
This property says that all objects of the concept carry all
its attributes and that there is no other object in G
carrying all attributes of the concept. Looking at the
definition of a formal concept one can easily see that for
all A G the pair (A'', A') is a formal concept. The dual

∑ ∑

∑

= =

=

⋅

⋅
=

m

i

m

i

m

i

w w

w w

iq ij

iq ij

1 1

2 2

1
) (

Cos(Di, Dj)

holds for all B M, i.e. (B', B'') is always a formal
concept, too. Yet, the sets of concepts achieved in this
way are equal and contain exactly the concepts existing
in the given context.
For formal concepts a subconcept/superconcept
relationship can then be defined as follows:
(A1, B1) (A2, B2) A1 A2 (B2 B1)
This relationship shows the dualism that exits between
attributes and objects of concepts. A concept C1= (A1,
B1) is a subconcept of concept C2=(A2, B2) if the set of
its objects is a subset of the objects of C2. Or an
equivalent expression is if the set of its attributes is a
superset of the attributes of C2. Actually, the set of all
formal concepts of a context forms a so-called concept
lattice. The infimum of this lattice is formed by (, M)
and its supremum is formed by (G,) if the context is
given by (G, M, I).
For example, in table 1, is shown a formal context that
corresponds to the documents d1, d2, d3 and d4
containing the keywords as is shown in table 1.
The corresponding Galois lattice, in figure 3 describes
the relation between concepts. This structure is useful to
easy navigate to a particular concept guided by the
keywords.

 Java OOP C++ OOD café island
d1 X X
d2 X X X
d3 X X
d4 X X

Table 1. Formal context example

Text summarization

Text summarization is the process of identifying salient
concepts in text narrative, conceptualizing the
relationships that exist among them and generating
concise representations of the input text that preserve the

gist of its content. We will use the term text
summarization, as in literature, but in fact this is an
approximation called some time extraction that is more
feasible today. To create an extract, a system needs
simply to identify the most important/topical/central
topic(s) of the text, and return them to the reader.
Although the summary is not necessarily coherent, the
reader can form an opinion of the content of the original.
This process is useful for hand handled devices because
is hard to display all information contained in html
pages.
The summarization algorithm contains five main steps:

1. identify the sentences in text
2. weighting of each sentence
3. sort the list of sentences according to the

weights
4. select the main sentences
5. the remaining sentences are sorted in the order

of apparition in the main text
Fore more details about summarization can be founds in
(Buyukkokten 2011;Stoffer)

SYSTEM DESCRIPTION

Our system, called SmartSearch, is a client/server
application that should offer information from the user
interest domain. The main components of the system as
shown in figure 4, are:
• SmartSearch Server
• SmartSearch iPaq Client
• SmartSearch Engine Descriptor

The server can respond to the user requests. These
requests are made by the Client application (login,
search, etc) or by the Description Tools applications.
When the server receives a search request from the
client, the query is identified and that query string is
send to each search engine selected by the user in his
profile. The server gets the results pages, which will then
be analyzed and the results will be sent to the client in
three formats:

- as a list of all results, sorted by some criteria
- as a set of clusters. The clustering is done using

hierarchical clustering on a set of vectors
computed by SVD (Lerman 1999)

- as the Galois lattice built from the results

{d1,d2,d3,d4},
∅

{d1,d3,d4}
,
 {Java}

{d1,d2}
{OOP}

{ d4},
{Java, island}

{d3},
{Java,
café }

{d1},
{Java,OOP}

{d2},
{C++,OOP,OOD}

{ ∅ },
 {Java,..., island}

Fig. 3 Galois lattice for FC in table 1

iPaq Client SmartSearch
Server

SmartSearch
Engine Descriptor

DBEngines

Fig. 4 System architecture

Fig. 5 Hierarchical clustering visualisation

When the server receives a request for a particular page
from the client, the server gets the specified page and
returns to the client that page or the summary of the
page, depending of the request type.

Because the most work is done on the server module, the
module “iPAQ Client” becames very small. The main
responsibility of this module is to implement the user
interface for small devices. The user can select to see
the results set of search as list, as is shown in figure 1. In
this mode, a list of all found results will be displayed. By
double clicking an item in the list a menu will appear;
the user can select “Open” in order to view that page in
the Browser window.
 The Hierarchical clustering is displayed in a tree
view. Each visible node represents a cluster. The cluster
name (what is written) is composed by all the keywords
contained in that cluster. Clicking on a “+” sign expands
that node and allows you to see all the document titles
contained by that cluster (fig. 5).
The Galois clustering is displayed in a tree view (fig. 6).
This is the tree representation of the Galois lattice. Each
visible node represents a concept: all documents that
contain the keyword(s) labelling this node. As we said
above, each document is the text of one result returned
by search engines. Clicking on a “+” sign expands that
node and allows you to see the subconcepts of this one,
i.e. a subset of documents that all contains additional
words.

CONCLUSIONS

In this paper we described some techniques used in
Smart Search system to facilitate the task of finding the
right information in the list of the results returned by
search engines. If the number of results is small, the best
option is to show them as a list. If this list is very large,
clustering the results helps the user to find easier the
desired information. Depending on the user’s purpose,
the hierarchical clustering could be more useful as the

Fig. 6 Tree visualisation of Galois lattice

Galois clustering and vice-versa. According to the user’s
wish, the searching results could be displayed as a list, as
hierarchical clusters or as Galois lattice. Together with
summarisation, the clustering has the advantage of
displaying large amounts of data on a small area, thus
being useful for the hand-handled devices.

REFERENCES

Berry M. and Dumais S., 1994 - Using Linear Algebra
for Intelligent Information Retrieval, CS-94-270,
Tenessee Univ., berry@cs.utk.edu,

Buyukkokten, Orkut, 2001 - Accordion Summarization
for End-Game Browsing on PDA and Cellular Phones,
Proc. Of the Human Factors in Computing Systhems,
CHI-01

Lerman Kristina , 1999 - Document Clustering in
Reduced Dimension Vector Space - USC Information
Sciences Institute 4676 Admiralty Way Marina del Rey,
CA 90292

Miiller, T – Concept Lattices for Web Searching –
http://www.cc.gatech.edu/~tomiller/concepts.pdf

Stoffer, S; Holley K – Text Summarization Presentation
Http://www.cs.unm.edu/~storm/TSPresent

